DESCRIPTION
mlockall disables paging for all pages mapped into the address space of the calling process. This includes the pages of the code, data and stack segment, as well as shared libraries, user space kernel data, shared memory and memory mapped files. All mapped pages are guaranteed to be resident in RAM when the mlockall system call returns successfully and they are guaranteed to stay in RAM until the pages are unlocked again by munlock or munlockall or until the process terminates or starts another program with exec. Child processes do not inherit page locks across a fork. Memory locking has two main applications: real-time algorithms and high-security data processing. Real-time applications require deterministic timing, and, like scheduling, paging is one major cause of unexpected program execution delays. Real-time applications will usually also switch to a real-time scheduler with sched_setscheduler. Cryptographic security software often handles critical bytes like passwords or secret keys as data structures. As a result of paging, these secrets could be transfered onto a persistent swap store medium, where they might be accessible to the enemy long after the security software has erased the secrets in RAM and terminated. For security applications, only small parts of memory have to be locked, for which mlock is available.
The flags parameter can be constructed from the bitwise OR of the following constants: